Hidden Error Variance Theory. Part II: An Instrument That Reveals Hidden Error Variance Distributions from Ensemble Forecasts and Observations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of Variance Error

This paper accurately quantifies the way in which noise induced estimation errors are dependent on model structure, underlying system frequency response, measurement noise and input excitation. This exposes several new principles. In particular, it is shown here that when employing Output–Error model structures in a prediction-error framework, then the ensuing estimate variability in the freque...

متن کامل

Accurate Quantification of Variance Error

This paper accurately quantifies the way in which noise induced estimation errors are dependent on model structure, underlying system frequency response, measurement noise and input excitation. This exposes several new principles. In particular, it is shown here that when employing Output–Error model structures in a prediction-error framework, then the ensuing estimate variability in the freque...

متن کامل

The Analysis of Variance Error Part I:Accurate Quantification

This and a companion paper focus on the accurate quantification of the way noise induced estimation errors are dependent on model structure, underlying system frequency response, measurement noise and input excitation. This study exposes several new principles. In particular, it is shown that when employing Output–Error and Box–Jenkins model structures in a prediction-error framework, then the ...

متن کامل

Exact Quantification of Variance Error

Abstract: This paper establishes a method for quantifying variance error in cases where the input spectral density has a rational factorisation. Compared to previous work which has involved asymptotic-in-model-order techniques and yielded expressions which are only approximate for finite orders, the quantifications provided here are exact for finite model order, although they still only apply a...

متن کامل

Small-Variance Asymptotics for Hidden Markov Models

Small-variance asymptotics provide an emerging technique for obtaining scalable combinatorial algorithms from rich probabilistic models. We present a smallvariance asymptotic analysis of the Hidden Markov Model and its infinite-state Bayesian nonparametric extension. Starting with the standard HMM, we first derive a “hard” inference algorithm analogous to k-means that arises when particular var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Weather Review

سال: 2013

ISSN: 0027-0644,1520-0493

DOI: 10.1175/mwr-d-12-00119.1